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Spintronics

• High degree of spin polarization (at surfaces)

• Transmission across interfaces without 
depolarization

insulator

Concept: use electron spin (as well as the electronics’ 
counterpart - charge) to process and transmit information
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J. O’Donnell, et al, APL 76, 1914 (2000)
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Unfortunately,
this magneto-resistance 
can decrease dramatically 
at higher temperatures 

Possible reasons: Spin-flip scattering at interfaces; Loss of surface spin polarization
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Surface Spin Polarization
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J.-H. Park, et al, PRL 81, 1953 (1998)

M F. Ott, et al, JMMM 211, 200 (2000)

Polarized neutron reflectometry
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The spin polarization at interfaces in all 
studied half-metallic oxides decreases 

much faster than M(T)   
J.D.M. Coey and C.L. Chien,

MRS Bulletin, 720 (2003)Magnetic ‘dead’ layers at both interfaces

Why does spin polarization decrease at surfaces?
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Why Does Spin Polarization Decrease at Surfaces?

Chemical disorder
loss of oxygen
cation segregation

Physical disorder
roughness
surface reconstruction, strain

To evaluate these, we need to understand 
the mechanism of FM spin polarization
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Doped Manganites: FM and Conduction by Double Exchange

In La1-xSrxMnO3, there are x ions of Mn+4 and 1-x ions of Mn+3

This leads to the possibility of conductivity by double exchange

Mn+3Mn+4 O -2

e-

η

Hund’s rule favors
aligned with 

Hopping leads to FM exchange
alignment of    and    lowers the total 
energy by increasing hopping rate

FM leads to higher conductivity~ cos2(η/2)
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Doped Manganites Exhibit Double Exchange

Spontaneous magnetization below 
TC is symbiotic with a metal 
insulator transition (MIT)

This suggests that conductivity and 
magnetization are a result of 
double-exchange 

double-exchange cannot explain high temperature 
conductivity in a simple way, since for a paramagnet

σDE/σo~ < cos2(η/2) > = 0.5

0

0.2

0.4

0.6

0.8

1

0 100 200 300
0

0.2

0.4

0.6

0.8

1

T(K)

 

σ/
σ 0

M
/M

s

M from neutron
scattering

Electron localization mechanism is needed
A.J. Millis, P.B. Littlewood and B.I. Shraiman, PRL 74, 5144 (1995)
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Polarons
Suggested that polarons play a role in transport for T>TC

Mn+3Mn+4 Mn+4
Mn+3

e- e-

metallic (mixed-valence) state

Metal  below TC (delocalized
charges in Bloch waves) 

Mn+3 is Jahn-Teller active

Insulator above TC (localized 
charges thermally activated) 
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Why Does Spin Polarization Decrease at Surfaces?
Chemical disorder

loss of oxygen
cation segregation

Physical disorder
roughness
surface reconstruction, strain

Electron localization at surface
due to one or more of the above

Tunneling can address the metallic behavior of surfaces through the density of states, but . . .

To profile surface spin polarization, we need x-ray magnetic scattering and absorption

Could the free surface promote Mn+3/Mn+4 ordering to better accommodate the 
strain of Jahn-Teller distortions ?

For Mn+3/Mn+4 ordering, we need element-selective x-ray scattering and absorption

Fortunately, both are available at APS 4ID-C
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X-ray Probes
•Applied fields to 7 T
•30 -400 K sample temperature

Surface and Interfaces

Reflectivity = magnetic 
resonant scattering

X-ray beam

Near Surface Absorption
(Probes ~ 1-2 nm)

Electron yield

Bulk Absorption
(Probes ~ 20 nm)

Fluorescence 
yield

Electromagnet
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Near surface Mn L edge absorption

4ID-C, Advanced Photon Source
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Bilayer Manganites -- La2-2xSr1+2xMn207

“A” site

Rocksalt
site

Blocking Layer

Structure and spin 
arrangement below Tc

for x=0.34-0.42
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Manganites exhibit high degree of 
spin polarization in the bulk
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What about their surfaces ?
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Angle-Dependent X-Ray Resonant Magnetic Scattering
X

R
M

S

646644642640638636
Energy (eV)

 θ = 5 degrees
 

 θ = 16 degrees

XRMS = Reflection I+ - I-

Sign change with angle Interference

θ

Chemical and magnetic surfaces are not coincident !
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Modeling XRMS

Continuum electrodynamic modeling of XRMS

• Determine dielectric 
constants from absorption

• Input structure

• Solve Maxwell’s 
equations

Structure

MnO2 (5Å)

MnO2 (5Å)

MnO2 (5Å)

LaSrO (5Å)

LaSrO (5Å)
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Thickness of Non-Magnetic Surface Layer

XRMS is very sensitive to magnetic profile !

X
R

M
S

646644642640638636

Photon Energy (eV)

16 deg.

 Calculation for:
 

 0 non-FM Bilayers
 

 1 non-FM Bilayer
 

 2 non-FM Bilayers
 
 

 Data at θ = 16 deg.

Top bilayer alone is non-FM
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Non-Magnetic Surface Bilayer

The angular dependence of XRMS is also only consistent with 
the top bilayer alone being magnetically inactive !
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 Data θ = 5 deg.
 Simulation

 
 Data  θ = 16 deg.
 Simulation

 
 
 

What about x-ray absorption ?
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Depth Dependent of X-ray Magnetic Circular Dichroism (XMCD)

Depth dependent escape of secondary electrons

e-
XMCD signal  ∆I(z)

1 nm surface layer

~50%of XMCD signal

∆I ~ e-z/λ

1 nm

λ ~ 1.5 nmz
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Surface Magnetization vs. Temperature
Quantify average near-surface

magnetism (top ~1-2 nm)
Surface magnetization 

XRMS, XMCD vs.temperature

Both show bulk like M vs. T !
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Magnetic Profile vs. Temperature

Bilayer Manganites Cubic Perovskite Manganites
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J.-H. Park, et al, PRL 81, 1953 (1998)

Significant reduction over most of 
the temperature range

Bulk spin polarization in 2nd bilayer
slight reduction only very close to TC
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Electronic Properties from Point-Contact Tunneling

Initial soft contact
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Intrinsic Insulating Surface Bilayer
Data shows the surface bilayer, alone, is an intrinsic insulator with a 375 meV bandgap

That the surface bilayer is an insulator 
which exhibits no long-range FM order

is entirely consistent with DE 

Au

Mn

1.4 nm

The 1.4-1.5 nm thick tunneling barrier 
is consistent with atomic dimensions

The abrupt changes in only the topmost bilayer is likely due to the 
weaker electronic and magnetic coupling between bilayers.
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What is the Nature of Surface Magnetic Order?

Probe surface order with near surface XMCD in high field
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Self-Assembled Nanoskins: Pathway to Ideal Magnetic Tunnel Junctions

Ideal Magnetic Tunnel Junction:
intrinsic nanoskin barrier

ferromagnetic
counterelectrode

full bulk polarization 
at nanoskin interface

Full bulk spin polarization
in second bilayer up to ~ TC
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Future Directions

ferromagnetic
counterelectrode

full bulk polarization 
at nanoskin interface

• Fabricate magnetic tunnel junctions 
on layered manganites

• Seek the detailed mechanism of electron localization at surface 
study surface electronic properties using element-selective

x-ray scattering and absorption
explore oxygen edge as well as manganese

• Take-home message: Another example of the power of coupling 
synchrotron x-rays with other techniques to address complex science issues
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THE END
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Transport of Spin from Device to Device
One promising approach:
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